Operational properties of fluctuation X-ray scattering data
نویسندگان
چکیده
X-ray scattering images collected on timescales shorter than rotation diffusion times using a (partially) coherent beam result in a significant increase in information content in the scattered data. These measurements, named fluctuation X-ray scattering (FXS), are typically performed on an X-ray free-electron laser (XFEL) and can provide fundamental insights into the structure of biological molecules, engineered nanoparticles or energy-related mesoscopic materials beyond what can be obtained with standard X-ray scattering techniques. In order to understand, use and validate experimental FXS data, the availability of basic data characteristics and operational properties is essential, but has been absent up to this point. In this communication, an intuitive view of the nature of FXS data and their properties is provided, the effect of FXS data on the derived structural models is highlighted, and generalizations of the Guinier and Porod laws that can ultimately be used to plan experiments and assess the quality of experimental data are presented.
منابع مشابه
Three-dimensional single-particle imaging using angular correlations from X-ray laser data.
Femtosecond X-ray pulses from X-ray free-electron laser sources make it feasible to conduct room-temperature solution scattering experiments far below molecular rotational diffusion timescales. Owing to the ultra-short duration of each snapshot in these fluctuation scattering experiments, the particles are effectively frozen in space during the X-ray exposure. In contrast to standard small-angl...
متن کاملIterative phasing for fluctuation X-ray scattering.
Fluctuation X-ray scattering (FXS) is an extension of small- and wide-angle X-ray scattering in which the X-ray snapshots are taken below rotational diffusion times. This technique, performed using a free electron laser or ultrabright synchrotron source, provides significantly more experimental information compared with traditional solution scattering methods. We develop a multitiered iterative...
متن کاملAcquiring molecular interference functions of X-ray coherent scattering for breast tissues by combination of simulation and experimental methods
Background: Recently, it has been indicated that X-ray coherent scatter from biological tissues can be used to access signature of tissue. Some scientists are interested in studying this effect to get early detection of breast cancer. Since experimental methods for optimization are time consuming and expensive, some scientists suggest using simulation. Monte Carlo (MC) codes are the best...
متن کاملMagnetic Properties and Structural Study of Ni-Co/Cu Multilayers Prepared by Electrodeposition Method
Ni-Co/Cu multilayers have been grown by electrodeposition method from a single electrolyte (based on Ni(SO4).6H2O, Co(SO4).7H2O, Cu(SO4) and H3BO3) using galvanostatic control on titanium sublayers. The X-ray diffraction (XRD) patterns confirmed the multilayered structure with the nanometer thicknesses. Also, electron diffraction x-ray (EDX) analysis confirmed the purity of deposited samples. ...
متن کاملStudy on Mechanical and microcrystalline on hybrid nanocomposites by WAXS
The aim of this work is to probe the influence of nanoclay and turmeric spends content on microcrystalline of vinyl ester hybrid nanocomposites. A series of vinyl ester hybrid nanocomposites have been fabricated with varying amounts of TS viz., 0, 2.5, 5, 7.5 and 10 % w/w along with 2% nanoclay. The microcrystalline parameters such as crystallite size and lattice strain of vinyl ester hybrid na...
متن کامل